April 15: Fibers of Ring Homomorphisms, continued

Last lecture we ended with the important corollary:

Corollary E4. Let $\phi : (R, \mathfrak{m}, k) \to (S, \mathfrak{n}, l)$ be a flat local homomorphism of local rings. Suppose $\underline{x} = x_1, \ldots, x_r \in S$ have the property that their images in $S/\mathfrak{m}S$ form a regular sequence. Then \underline{x} forms a regular sequence in S and $S/(\underline{x})S$ is flat over R.

Here is one of the main results from this section.

Theorem F4. Let $\phi : R \to S$ be a faithfully flat ring homomorphism.

- (i) If S satisfies S_n , then R satisfies S_n .
- (ii) If R satisfies S_n and the fibers $k(p) \otimes S$ satisfy S_n , for all $p \in \text{Spec}(R)$, then S satisfies S_n .
- (iii) Statements (i) and (ii) hold for Serre's condition R_n .

Proof. For (i), take $P \in \text{Spec}(R)$ and $Q \in \text{Spec}(S)$ such that Q is minimal over PS. Then S_Q is faithfully flat over R_P and height(Q) = height(P).

Now suppose depth(R_P) = r. If x_1, \ldots, x_r is a maximal regular sequence in R_P , by faithful flatness, these elements remain a regular sequence in S_Q . Moreover, there exists $c \in R$ with $Pc \in (x_1, \ldots, x_r)R$ and $c \notin (x_1, \ldots, x_r)R$.

Therefore, $PSc \in (x_1, \ldots, x_r)S$ and by flatness, $c \notin (x_1, \ldots, x_r)S$.

Since $Q^t \subseteq PS$ for some t, Q^t consists of zerodivisors modulo $(x_1, \ldots, x_r)S_Q$. Thus, $depth(S_Q) = depth(R_P)$.

Since $\dim(R_P) = \dim(S_Q)$, it follows that if $\operatorname{depth}(S_Q) \ge \min\{n, \dim(S_Q)\}$, then

 $\operatorname{depth}(R_P) \geq \min\{n, \dim(R_P)\}\)$, and thus R satisfies S_n .

For (ii) suppose R and the fibers $k(p) \otimes S$ satisfy S_n . Let $Q \subseteq S$ be a prime ideal, and set $P := Q \cap R$. We may localize at Q, so that R is a local ring with maximal ideal P and S is local at Q and flatness is preserved.

Note that S/PS is a fiber of our original ring homomorphism. Thus, R and S/P satisfy S_n .

Let $r := \operatorname{depth}(S/PS)$. Take $\underline{y} = y_1, \ldots, y_r \in S$ such that their images in S/PS form a regular sequence.

By Corollary E4, the sequence \underline{y} is a regular sequence in S and $S/(\underline{y})S$ is flat over R.

Now take $x_1, \ldots, x_s \in R$, a maximal regular sequence so that $s := \operatorname{depth}(R)$.

Since $S/(\underline{y})S$ is flat over R, and $\underline{x} \cdot (S/(\underline{y})S) \neq S/(\underline{y})S$, the sequence \underline{x} is a regular sequence on $S/(\underline{y})S$.

Thus, y, \underline{x} is a regular sequence in S.

Therefore,

 $\operatorname{depth}(S) \ge \operatorname{depth}(R) + \operatorname{depth}(S/PS) \ge \min\{n, \dim(R)\} + \min\{n, \dim(S/PS)\}.$

Consider the sum on the far right. If *n* is strictly less than one of $\dim(R)$ or $\dim(S/PS)$, then one of the terms in the sum equals *n*, so the sum, and hence $\operatorname{depth}(S)$ is greater than $\min\{n, \dim(S)\}$.

Suppose both $\dim(R)$ and $\dim(S/PS)$ are less than or equal to n.

The sum on the right above becomes $\dim(R) + \dim(S/PS) = \dim(S)$,

and thus depth(S) $\geq \min \{n, \dim(S)\}$, in this case as well.

This shows S satisfies S_n .

For part (iii), assume first that S satisfies R_n . Let $P \in \text{Spec}(R)$ be a prime of height *n* or less and take $Q \in \text{Spec}(S)$ minimal over *PS*. As before, height(Q) = height(*PS*) and upon localizing at Q, we may assume that ϕ is a flat, local homomorphism between local rings of the same dimension, and S is a regular local ring.

Let k denote the residue field of R and take the start of a minimal free resolution

 $\dots \to F_2 \to F_1 \to R \to k \to 0$

of k as an R-module. It suffices to show $F_t = 0$, for some t, for then k will have finite projective dimension over R and thus, R will be a regular local ring.

Tensor this resolution with S. Since S is flat over R, the new sequence

$$\cdots \rightarrow F_2 \otimes S \rightarrow F_1 \otimes S \rightarrow S \rightarrow k \otimes S \rightarrow 0$$

is exact. Moreover, this is a minimal resolution over S.

Since S is regular, we must have $F_t \otimes S = 0$, for $t \ge \dim(S)$. Thus, some $F_t \otimes S = 0$, and by faithful flatness, $F_t = 0$, for some n. Thus, R is regular.

Now suppose *R* and the fibers of ϕ satisfy R_n .

As before, we take $Q \in \text{Spec}(S)$ and localize S at Q, so that for $P = Q \cap R$, R is local at P, and hence regular, and the closed fiber S/PS is regular.

Now, *P* is generated by a regular sequence in *R*, which remains regular in *S*, by flatness. Moreover, Q/PS is generated by a regular sequence.

Putting these sequences together shows that Q is generated by a regular sequence which means S is a regular local ring, which is what we want.

Here are some immediate corollaries.

Corollary G4. Let $\phi : R \to S$ be a faithfully flat ring homomorphism. Then:

- (i) S is Cohen-Macaulay if and only if R is Cohen-Macaulay and the fibers $k(p) \otimes S$ are Cohen-Macaulay, for all $p \in \text{Spec}(R)$.
- (ii) S is regular if and only if R is regular and the fibers k(p) ⊗ S are regular, for all p ∈ Spec(R).

Proof. Immediate from Theorem F4.

Corollary H4. Let (R, \mathfrak{m}) be a local ring. Then:

- (i) \widehat{R} is reduced if and only R is reduced and its formal fibers are reduced. In particular, if R is a local domain, then R is analytically unramified if and only the formal fibers of R satisfy S_1 and R_0 .
- (ii) \hat{R} is integrally closed if and only if R is integrally closed and the formal fibers of R are integrally closed. In particular, if R is an integrally closed local domain, then \hat{R} is an integrally closed domain if and only if the formal fibers of R satisfy S_2 and R_1 .

Proof. This follows from Theorem F4 and the characterizations of the reduced and integrally closed properties in terms of the Serre conditions S_n and R_n .

We now state some crucial elements in the definition of an excellent local ring.

Definitions. (i) Let k be a field and A an algebra over k (typically Noetherian). A is said to be geometrically regular if for every finite field extension $k \subseteq k'$, $k' \otimes_k A$ is regular.

(ii) The Noetherian ring R is said to be a G-ring if, for every $Q \in \text{Spec}(R)$, the formal fibers of R_Q are geometrically regular.

As we are not going to prove anything of substance with these properties, a number of comments are in order.

Comments. (i) If the *k*-algebra is geometrically regular, it is clearly regular. On the other hand, it turns out that if A is regular, and k' is a finite separable extension of k, then $k' \otimes_k A$ is automatically regular.

Thus if k is a perfect field, any regular k-algebra is geometrically regular. In particular, if k has characteristic zero, then any regular k-algebra is geometrically regular. Therefore, if R contains a field of characteristic zero, then R is a G-ring if and only if the formal fibers of R_Q are regular, for all $Q \in \text{Spec}(R)$.

(ii) Suppose (R, \mathfrak{m}) is a local ring. To say that the formal fibers of R are geometrically regular, means that for every prime $p \in \operatorname{Spec}(R)$, the k(p)-algebra $k(p) \otimes_R \widehat{R}$ is geometrically regular. For non-local R, to be a G-ring means this property holds for R_Q , for all $Q \in \operatorname{Spec}(R)$.

(iii) Some deep theorems concerning G-rings are:

- (a) If (R, \mathfrak{m}) is a local ring and the formal fibers of R are geometrically regular, then R is a G-ring.In other words, in the local case, one does not have to check the formal fibers of R_Q , for $Q \in \operatorname{Spec}(R)$.
- (b) A complete local ring is a G-ring.
- (c) If R is a G-ring, then any finitely generated R-algebra is also a G-ring.

The proofs of these theorems involve a lot of machinery, including modules of differentials and the notions pertaining to *formal smoothness*.

Most of the details can be found in Matsumura's first book *Commutative Algebra*. As one might suspect, the difficulties mainly lie in the characteristic p > 0 case or the mixed characteristic case.

(iv) A local ring is excellent (finally!) if it is a universally catenary G-ring.

When R is not local, an additional condition is required for a ring to be excellent, namely that, for any finitely generated R-algebra T, the set of primes $Q \in \text{Spec}(T)$ such that R_Q is regular form an open subset of Spec(T).

It turns out that this condition holds automatically in a local *G*-ring, though this is also difficult to prove.

 $\left(v\right)$ An excellent local domain is a Nagata domain. This will follow from the theorem below.

(vi) A finitely generated algebra over an excellent ring is excellent. The difficulty here lies in the transference of the *G*-ring property.

Also, homomorphic images and localizations of excellent rings are excellent.

(vii) It follows from what we have done this semester, and the statements above, that a regular local ring containing a field of characteristic zero is excellent.

We have already seen with Nagata's example that even a DVR in characteristic p > 0 need not be excellent.

There are examples of regular local rings of mixed characteristic that are not excellent.

(viii) Standard examples of excellent rings include:

- (a) Complete local rings (including fields).
- (b) Characteristic zero Dedekind domains, including \mathbb{Z} .
- (c) Finitely generated algebras over rings in (a), (b), and homomorphic images and localizations of these algebras.

(ix) A celebrated theorem of E. Kunz states that if R is a Noetherian ring containing a field of characteristic p, then R is excellent if R is a finite R^{p} -module.

R. Datta and K. Smith recently proved that if R is a domain containing a field of characteristic p > 0 and its quotient field K satisfies $[K : K^p] < \infty$, then if R is excellent, then R is finite over R^p .

We close this section with a theorem concerning Nagata rings and formal fibers. We need two preliminary results, the first of which we state as a Remark.

Remark. Let A be a ring, $S \subseteq A$ a multiplicatively closed ate. For A_S -modules M and N, we have $M \otimes_A N = M \otimes_{A_S} N$ and for A-modules M, N, we have $M_S \otimes_A N = (M \otimes_A N)_S$. We will use these properties below without comment.

The following lemma extends what we already know in the domain case to the case of reduced local rings.

Lemma 14. Let (R, \mathfrak{m}) be a reduced Nagata ring with total quotient ring K. Let T be a finite, integral extension of K such that T is also reduced. Let S denote the integral closure of R in T. Then S is a finite R-module.

Proof. Note that both K and T are direct sums of fields. Let $P \subseteq T$ be a minimal (and also, maximal) prime ideal. Then $K/(P \cap K) \subseteq T/P$ is a finite extension of fields.

Since $R/(P \cap R)$ is a Nagata ring, the integral closure of $R/(P \cap R)$ in T/P is a finite $R/(P \cap R)$ -module. Since $S/(S \cap P)$ is contained in that integral closure, $S/(P \cap S)$ is a finite module over $R/(P \cap R)$, and hence, also a finite *R*-module.

If we let P_1, \ldots, P_r denote the minimal primes of T, then $T = T/P_1 \oplus \cdots \oplus T/P_r$ (by the Chinese remainder theorem),

and we have

$$S \hookrightarrow S/(P_1 \cap S) \oplus \cdots \oplus S/(P_r \cap S) \subseteq T.$$

Since each $S/(P_i \cap S)$ is a finite *R*-module, *S* is a finite *R*-module.

Definition. Let k be a field. A k-algebra A is said to be geometrically reduced if $k' \otimes_k A$ is reduced for all finite extensions k' of k.

Here is the final theorem of this section.

Theorem J4. Let (R, \mathfrak{m}) be a local domain with quotient field K. Then R is a Nagata ring if and only if its formal fibers are geometrically reduced. In particular, if R is an excellent local domain, then R is a Nagata ring.

Proof. Assume that R is a Nagata ring and let $p \in \text{Spec}(R)$. Set $U := R \setminus p$. We need to show that $k(p) \otimes_R \widehat{R} = (\widehat{R}/p\widehat{R})_U$ is geometrically reduced.

Note that this is the generic formal fiber of R/p which is a Nagata ring. Thus, we may replace R/p by R and begin again assuming that R is a Nagata ring and show that its generic formal fiber $K \otimes \hat{R} = \hat{R}_U$ is geometrically reduced, where U is the set of non-zero elements of R.

Let K' be a finite field extension of K. We want $K' \otimes_K \widehat{R}_U$ to be reduced. Let \widetilde{K} denote the total quotient ring of \widehat{R} . We first note that

$$K' \otimes_{\kappa} \widehat{R}_U \hookrightarrow K' \otimes_{\kappa} \widetilde{K},$$

since $K \subseteq K'$ is a faithfully flat extension of K-modules.

Thus, it suffices to show $K' \otimes_K \tilde{K}$ is reduced. But

$${\mathcal K}'\otimes_{{\mathcal K}} { ilde {\mathcal K}} = {\mathcal K}'\otimes_{{\mathcal R}} { ilde {\mathcal K}} \subseteq {
m QR}({\mathcal K}'\otimes_{{\mathcal R}} {\widehat {\mathcal R}}),$$

where 'QR' denotes quotient ring.

Therefore, it suffices to show that $QR(K' \otimes_R \widehat{R})$, and hence $K' \otimes_R \widehat{R}$ is reduced.

Now, let S denote the integral closure of R in K'. Then S is finite over R, so $\widehat{S} = S \otimes_R \widehat{R}$ and S is also a Nagata ring. Thus, \widehat{S} is reduced, since a Nagata local domain is analytically unramified.

Therefore $QR(\widehat{S})$ is reduced. On the other hand, we have

$$\mathcal{K}'\otimes_R\widehat{\mathcal{R}}=\mathrm{QR}(\mathcal{S})\otimes_R\widehat{\mathcal{R}}\subseteq\mathrm{QR}(\mathcal{S}\otimes_R\widehat{\mathcal{R}})=\mathrm{QR}(\widehat{\mathcal{S}}),$$

which shows $K' \otimes_R \widehat{R}$ is reduced, which is what we want.

Conversely, suppose the formal fibers of *R* are geometrically reduced. Let $p \in \text{Spec}(R)$. We must show R/p satisfies N_2 .

Since the generic formal fiber of R/p is geometrically reduced, as before, we may replace R/p by R, assume that R is a local domain with quotient field K and that the generic formal fiber $K \otimes_R \hat{R} = \hat{R}_U$ is geometrically reduced, where U is the set of non-zero elements in R.

Let K' be a finite field extension of K and S be the integral closure of R in K'.

We must show S is a finite R-module.

For this, it suffices to show that $S \otimes_R \widehat{R}$ is a finite \widehat{R} -module.

Note: we do not yet know $S \otimes_R \widehat{R} = \widehat{S}$.

We have

$$S \otimes_R \widehat{R} \subseteq K' \otimes_R \widehat{R} \subseteq K' \otimes_R \widehat{R}_U = K' \otimes_K \widehat{R}_U,$$

with the last ring on the right being reduced by assumption.

Thus, $K' \otimes_R \widehat{R}$ is reduced and hence its quotient ring T is reduced. On the other hand,

$$\widehat{R} \hookrightarrow \widehat{R}_U = K \otimes_R \widehat{R} \hookrightarrow K' \otimes_R \widehat{R}$$

which shows that \widehat{R} and its quotient ring \widetilde{K} are reduced.

Since T is a finite extension of \tilde{K} , we are in the situation of Lemma I4 above. \hat{R} is a reduced Nagata ring (since a complete local ring is a Nagata ring), so its integral closure in T is a finite \hat{R} -module.

Since $S \otimes_R \widehat{R}$ is contained in this ring, $S \otimes_R \widehat{R}$ is a finite \widehat{R} -module, which completes the proof.